TRANSIENT TEMPERATURE FIELD IN A FLAT PLATE
WITH INTERNAL COMPOUNDING OF HEAT CONDUCTION
AND RADIATION

V. F, Vorob'ev and Yu, I, Dudar'kov UDC 536.3

The heating of a flat plate is analyzed, this plate being made of a material with selective
radiation absorption characteristics, when the active external convective and radiative
fluxes vary with time.

The heating rate of materials with selective radiation absorption characteristics depends on the emis-
sion spectrum of the source and on the absorption spectrum of the material. Radiant energy is transmitted
with attendant partly total reflection and partly refraction of rays at the intermedia boundaries around the
receiver body. As the power of the external radiation source increases and as the body temperature rises,
these phenomena play a more important role in the heat propagation inside the body [1].

The temperature field in a flat plate, taking into account these phenomena, was first analyzed in [2]
in connection with the heating rate of slabs of optical glass. It was a basic deficiency of that analysis to
consider the intensity of the external heat source constant and equal to the intensity of an ideal black-body
emitter, The volume of calculations required to account for the internal absorption of radiant energy was
so staggering that even with the aid of modern computers only the simplest problems could be solved. An
approximate method of solution based on the concept of effective emissivity of a surface [3] is applicable
only when the temperature gradients are small. '

The method of solution considered here will be based on the hypothesis of small reflectivity and on
the concept of characteristic (optically thick and optically thin) radiation absorption layers, which does not
essentially restrict the applicability of the solution to a certain class of problems only. The plate material
may be any dielectric with a low mean reflectivity.

Fundamental Equations, The absorption of radiant energy
bands I—'{dw and I;\dw in an infinitely large plate depends on the opti-
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picting the transmission of rays _
through a flat plate, the boundary conditions inside the body near the 7 = 0 boundaries become
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Fig.2. Spectral reflectivity of dielectrics, as a function of the incidence and the refraction
angle: 1) p(g) for n = 1,5; 2) p(6) for n = 2; 3y p(0') for n = 1.5; 4) p(@') for n = 2,

Fig.3. Plate temperature (T, °C) as a function of time (t, sec), a comparison between re-
sults of our calculation (solid lines) and the results in [2] (dashed lines) for the tempera~
ture at the plate surfaces (1) and at the plate center (2).

lf (O) + P’) = pp (IL, P") 17? (;Ob + “‘) + [1 —Pp (l"’v p‘l)] n’Z[?\,p (u,' i), (3)
with p = j and p = k corresponding respectively to the upper and the lower sign () for I,

In the equation of energy transmission
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there appears a term representing the resultant internal radiation flux

g, = ]:f(lif—lm udwdA. (5)
0

an

The fraction of radiant energy which is absorbed and emitted at the plate surfaces (it can be defined
by the criterion g; &l > 1 for a characteristic layer thickness Al « I) determines, together with the con-
vective fluxes expressed in terms of h, H, or q, the boundary condition for Eq. {4):
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where (Sp =-1for p =j and 6y

According to Fresnel's law, for intrinsically polarized radiation
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where the indices A, j, and k of p have been omitted. Formulas 2), (3), and (7) are valid for sufficiently
smooth surfaces, The phenomena of dispersion or scatter are not considered here,

ol

Solution of the Problem, For a given initial temperature distribution T () the probiem is defined by
relations (1)-(7). An essential difficulty in solving it has to do with the calculation of the qp-term in &),
We show here a procedure calculating this quantity in the case of zones optically thin and optically thick
with respect to the radiation absorption spectrum. After that, the solution of the problem by the explicit
finite-difference scheme of approximation presents no basic difficulties and has been carried out with the
aid of a computer,
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7 ) Integrating Eqs. (1) with the conditions (2), insert-
2\ ing the obtained expressions for I and I3 into (5), and
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Fig.4. Temperature of quartz plate surfaces
(T, °C) as a function of time (t, sec): tem- T Ty
perature of outer surface (1) and of inner sur- X drl} pdp - 2n2 [ j IoE, (v — 1) dy— j InoE, (vy— ) dry ] {8)
face (2) for a semitranslucent plate (solid lines) '

andfor an opaque (&€ = 0.91) plate (dashed lines).

T

withp,q =j, kandp = q while T =7 when p =j, but 7 =7,
-7 and

25\ 17
Ap= [1 — P;0€XP (_TLQ) ] s Ay =—Ap, (9)
When p = k‘ \

In the last two terms of (8) an additional integration has been performed with respect to y according
to the well known formula,

1
E,()= X e —-z—) du. (10
B

0

In order to continue integrating with respect to u, we consgider the values of reflectivity for dielec-
trics in an airless medium, The p = p(g) and p = p(g') characteristics calculated according to () and (7)
are shown in Fig.2. The value of p(§") does not differ much from the value of Py, at normal incidence for
all angles ¢' = 60°, at which the quantity of emitted energy is relatively high, An examination of the mean
hemispherical reflectivity p of dielectrics — averaged over the incidence angles and over the polarization
angles — shows that Pp <1lwhenn =2,5;1- —p is equal to 1- _ﬁn within 5% and is only a weak function of A
4, 5]. We will, therefore, approximate functlon p(g') as follows: for &' < /2 we replace py and p, by their
mean values p, and py, cons1der1ng that O(p;) = O(pK) = O(p) and O(p%) « 1. With  respect to internal angles
9, this corresponds to a p1ecew1se -constant‘approximation: for ¢ < ¢, we let pj = pjand py = pk, for ¢ = 6,
we let p. = p. =1. Treating ©* as the small parameter in the problem we will estimate the terms in (8)
with 7, within the absorption bands where 7, > 1 and 7 within the transmission bands where 7, «<1. Since
the integrand functions of the Ajkf kind in (8) are sign-definite as far as integration with respect to u inside
the braces is concerned and since they do not contain singularities (7, # 0), hence expanding (9) into a
power series at various values of 7, and ¢ will yield for these terms

1 _ ji 1
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where
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A ~(1—pp) +0 (p ZT—") c A~ o,
. g 2z,

where 7, > 1 and when 7, « 1 respectively. Here u, < ¢ =1 for A; and 0 < ¢ < p, for A, (the O(p%-term
has been retained in the expression for A,, for the purpose of examining certain limitations),
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1t will be assumed that the radiation sources off the plate surface x = 0 are distributed within an opti-
cally thin layer of gas at a high temperature, this layer having a constant thickness b, and that the state of
the gas does not depend on the plate temperature, In this case the monochromatic absorptivity of the gas
layer at an angle ¢' to the x-axis is [6]:

ty, = 1 —exp(—g8) X ee,, (12)

with ey =1/, g = a{b, and a}"\ denoting the spectral radiation attenuation factor in a multicomponent mix-
ture of nonreacting gases. The parameter &, , which defines the directional characteristic of radiation I;\j,
may be considered limited (p(#') increases rapidly at angles § > 60°, and it suffices to consider onlyangles
smaller than those and to assume, accordingly, that &, < 2). Thus, according to (12), we have for the IM—

terms in (6) and (8), at wavelengths within the absorption (transmission) band of the material,

( L 4N = _I_S aiy Drodh = S S'eh Lo(T ) di . (13)
. Tt X, T X.

A;
For a radiating gas, function &, depends strongly on A, becoming zero within certain wavelength bands, also

generally on the gas temperature as well as pressure; calculating this function makes the numerical solu-
tion of the problem more comgplicated.

On the basis of (10), (11), and (13), all terms in (6) and (8) referred to the wavelength band dA are,
after integration with respect to u, expressed as integrals

§ By () o (1) dvyand 1o () [E, (2) d, (14)

where argument z assurnes the values 7, 7y + 7, 2T¢—Ty + 7, 2Tg + T—Ty, 2Tg + T4—T, T—Ty, T4— 7, and 27,
—7. A further transformation with respect to 74 and A is continued within the transmission band A by
means of the asymptotic representation of E (z) near z = 0 and within the absorption band A; by representing
the argument of I, (ry) as 7; = z; + z, followed by an expansion of I,¢ (g + z) in (14) into a power series
near z, for small z; such a transformation is shown in, for instance, [5].

The transformation of all terms in (8) for the transmission band with @i = aj(r) and for the absorption
band with ¢; = const will yieid for those terms
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where function 5 has been tabulated in [5]:
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For the thermal flux at the surface we find from (6)
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Formulas (15) and (16) can be used in the derivation of respective formulas for any number of A;
bands.

A computer program, on the BESM-3M, has been set up for calculating the temperature of a plate
heated from the x = 0 surface by a given radiative flux at a gas temperature ’_I’j (t) and by a convective flux,
the latter defined as a function of time in terms of enthalpy, or by a flux q, (). At the x = [ surface is given
a convective flux. The quantities ¢, A, and ¢ for the transmission band are functions of the temperature.

Examples. In the first example a 6 mm thick plate of silicate glass is heated from ideal black-body
sources radiating at a constant temperature T; = _’i‘k =707°C. This simple example is interesting on ac-
count of the numerical solution obtained [2] without the asymptotic representations for q,., which we have
used, and without taking into consideration the smallness of parameter p, That theoretical approach has
been supported also by experiment, The transmission band for these calculations was assumed 1.0-2.75
with an attenuation factor a = a(T) and the absorption band was assumed 2.75-4.0 p with @ = 500 m™*, Long-
wave radiation (>4,04) was absorbed at the plate surfaces.

The comparison of calculated results shown in Fig, 3 establishes a close agreement between both
solutions, within approximately 5%.

In the second example a quartz plate is heated from the x = 0 surface by a thermal flux qf): ¢ =1.5
1075 sin(7t/200) during t = 200 sec and q = 0 after 200 sec. The other initial data are: n = 1.5, 7 =12 mm,
T&) = 300K at t = 0, the transmission band 0-3.5 g with a = 0.18 m~!, the absorption band 3.5-4.3 4 with a
=150 m-!, long-wave radiation (>4.3 1) absorbed at the surface [7], ¥ = 2220 kg/m?, and the ¢(T), A(T)
characteristics taken from [8].

The result of calculations is shown in Fig.4 in terms of plate surface temperature as a function of
time, For comparison, also the temperature calculations for an opaque plate (qp =0 in ¢) and £ = 0,91)
are shown here,

This comparison indicates that bulk radiation of thermal energy in quartz affects the temperature
field, beginning approximately at a plate temperature of 300°C and then shifting the maximum at higher
temperatures, in consequence of a reduced effective emissivity of the plate behaving as a semitranslucent
body.

In silicate glasses this effect is weaker, because of their narrower transmission band and the lower
allowable temperature limit to which a plate may be heated.

NOTATION

is the wavelength;

is the plate thickness;

is the coordinate normal to the plane of the plate;

is the attenuation factor;

are the polar incidence and refraction angle respectively;

@ & MW S

=
D

4 =cos 8;

is the refractive index;

is the optical thickness;

is the temperature;

is the coordinate along the ray;

are the spectral intensity of radiation in the forward direction s and in the reverse direction respec-
tively;

is the solid angle;

is the reflectivity;

is the time; .

is the characteristic temperature of external radiation source;

is the density of the material;

is the specific heat of the material;

is the thermal conductivity of the material;

is the given external thermal flux at the plate surface;

is the resultant radiation flux;

is the heat-transfer coefficient in terms of enthalpy;

is the spectral hemispherical radiation intensity of an ideal black body;
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is the enthalpy of recovery;

is the enthalpy at plate surface temperature;

is the meridional angle;

is the mean hemispherical reflectivity;

is the reflectivity at a normal angle of incidence;
is the emissivity;

is the Stefan —Boltzmann constant;

:aix for P =j;

Tip = @i €—x) for p = k,

Subscripts

A

(.
i k

Qv Hx L DD

N

refers fo monochromatic energy;

) refers to outside the body;

refer to plate surfaces x = 0 and x = 1 respectively;

s refers to critical refraction angle;

refers to i-th wavelength band 4A; = A, - Aj ;.
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